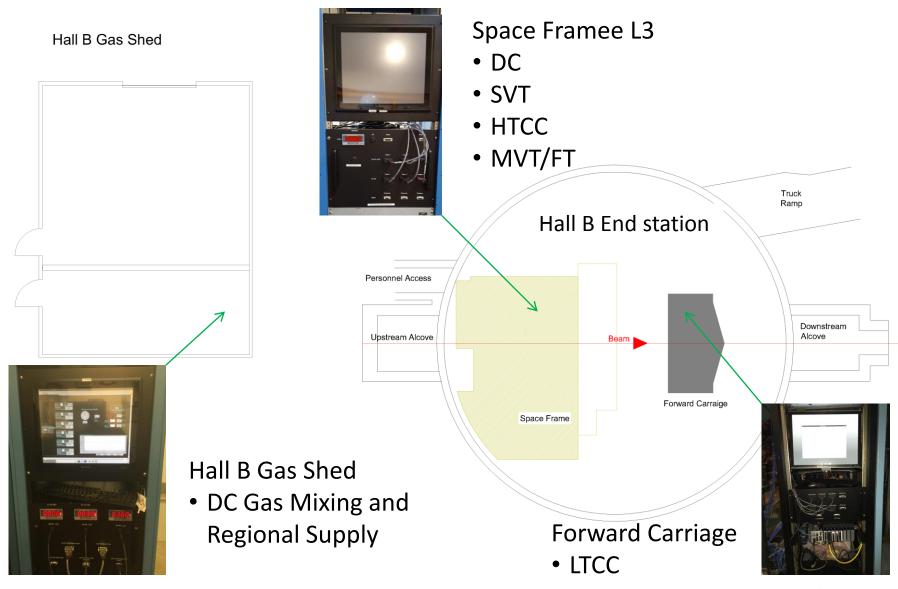
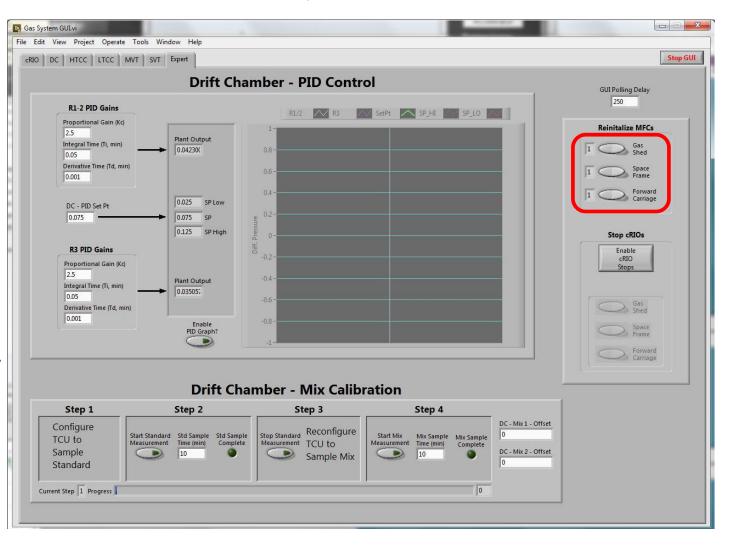
Hall B Gas Controls Report

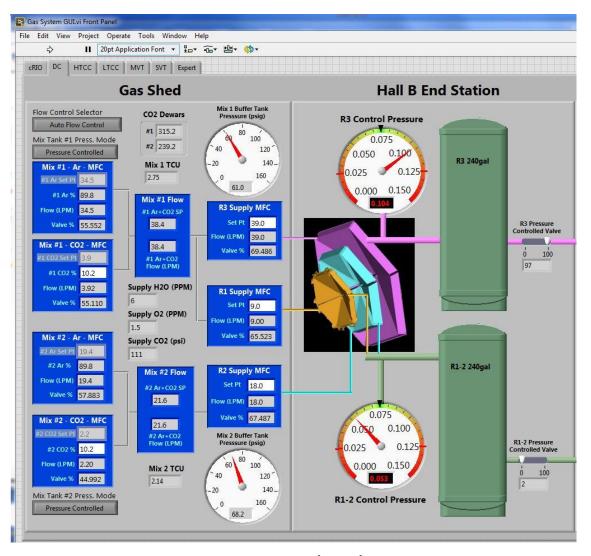

Marc McMullen

Detector Support Group

DSG Controlled Gas Systems


- 1. DC Supply and Mixing System(DC)
- 2. LTCC Sector 5 C4F10 Test(LTCC)
- 3. HTCC CO2/N2/Air Purge(HTCC)
- 4. SVT N2 Purge(SVT)
- MVT Mixing System(MVT/FT)

Hall B Gas Controls: System Locations


Gas Controls Expert GUI

- Daily gas controls checks to verify operation of controls software.
- Expert Screen checks to ensure all mass flow controller loops are running.
- Check controls tabs.
 - DC Supply and Mixing flows and pressures.
 - ➤SVT flow.
 - ➤ HTCC flow, pressure, and moisture.
 - ➤LTCC flow set point, valve position, flow, differential pressure.
 - >MVT flow.

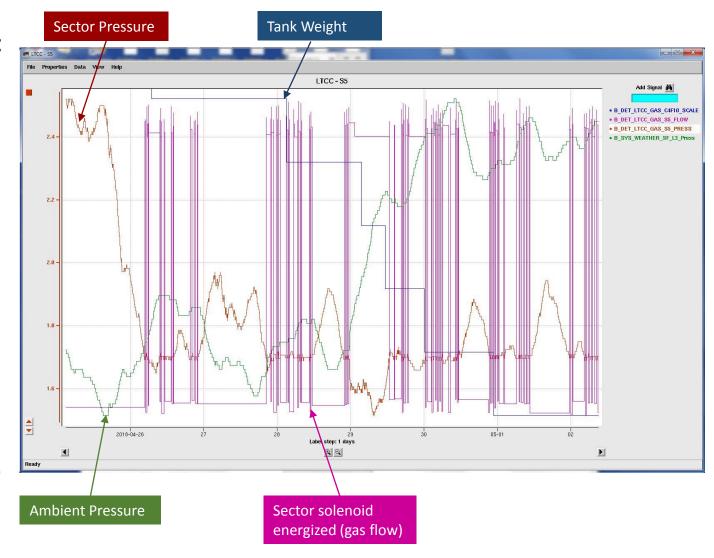
Gas controls expert screen

DC Gas Mixing and Regional Supply Controls

DC Gas Controls Tab

DC Supply and Mixing System

- Regional Supply (Flow set by Hall B Mech)
 - R1 flow (9Lpm) (low alarm at 1Lpm)
 - R2 flow (18Lpm)(low alarm at 5Lpm)
 - R3 flow (39Lpm)(low alarm at 9Lpm)
- Differential pressure
 - > R1/2 (~0.06 iwc)
 - > R3 (~0.100-0.120 iwc)
 - High alarms at 0.17iwc.
- Low CO2 alarm is 90psi.
- Mixing system tank pressure controls
 - Pressure (60-80psi)
 - Flow (120% or 80% times demand)


LTCC Sector 5

❖Flow (set by DSG at 0.1 Lpm)

- ➤ Ensure gas is flowing
 - if mfc valve is less than 100%, solenoid valve open.
- Flow starts below pressure set point (currently 1.74iwc)
- ➤ Flow stops at deadband of set point + 0.02iwc.
- Differential pressure vs. Ambient
 - > Observe behavior.

❖C4F10 Tank level

- ➤ Daily usage ~0.5Kg/day
 - Usage varies with detector response to ambient pressure.
- ➤ Total usage 115kg (75kg to fill, 40kg used)
- → 35kg remaining in tank.

S5 Diff. Pressure vs. Amb. Pressure with flow and C4F10 level.

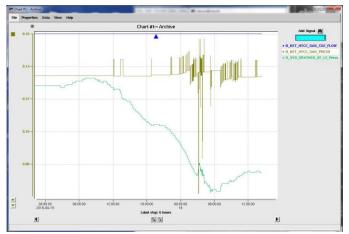
LTCC Daily Gas Usage

LTCC Sectors	daily avg. flow (L) since 11/08/17	Gas
2	37.41	N2
5	33.03	C4F10
6	614.46	N2

^{*}Sectors 1,3,and 4 have been removed or bypassed.

SVT and HTCC Purge Systems

❖SVT Flow


Flow should match demand on controls GUI.

*****HTCC

- Flow should match demand on controls GUI.
- ❖ Differential Pressure (~0.1iwc)
- ❖ Moisture (< 100ppm)</p>

SVT N2 flow in all areas

HTCC Diff. Pressure vs. Amb. Pressure during transient

MVT/FT Mixing System

- Mixing system mode
 - Automatic
 - ❖ Mixture (Ar/C4H10/CF4 and Ar/C4H10)
 - ❖ Bounces between high (150%) and low(50%) multipliers of the demand flow.
 - Demand flow is set automatically by MVT supply software (75sccm and 150sccm are typical).
 - ❖ Tank pressure (5 to 15 psi)
 - Manual
 - ❖ Flow is set by manually by MVT staff.

Issue: 3/14 Space Frame Gas Outage

- Hall B Mech. Group disconnected SVT MFCs after consulting with SVT manager.
- ❖DSG was not notified.
- Sub VI controlling all space frame MFCs timed out.
- Affected systems: SVT, MVT mixing, DC regional supply, HTCC MFCs were offline

No gas from 8:15am to 11am.

- DSG notified by SVT detector manager, that SVT had no gas flow.
- DSG reinitialized the space frame cRIO.
- Gas was restored to all systems.

Issues: Lessons Learned and Preventative Measures

- Instructions on proper procedure to shutdown any portion of gas control was passed to the Hall B gas community.
- Controls for the DC MFCs moved to the Gas Shed cRIO.
- MFC control will be broken down on the three cRIOs by detector, thus minimalizing the effect of a future unplanned outage.
- DSG recommends that system managers purchase individual cRIOs to provide independent control of their systems.

Conclusion

Gas system training for Hall B Mech. conducted

 DSG reviews status daily to ensure the system is functioning properly.

Gas system controls functioning very well.

The End